Implementation of BIM methodology to the Karavanke tunnel

Marko Žibert, Elea iC d.o.o., Head of tunnelling
Martin Lah, Elea iC d.o.o., Head of BIM implementation
Practicing tunneling engineer, researcher and geotechnical engineering professional with more than 15 years of experience on large infrastructure projects at home and abroad. Actively involved in developing innovative use of 3D geological, geotechnical and BIM modelling tools. I am acting as a partner at Elea iC, part of iC group of companies, a multiengineering global firm supporting public & private clients as well as contractors on projects on all continents.

Civil engineering professional with 10 years of experience in implementation of BIM methodology. Currently he is responsible for systematic implementation of BIM methodology in iC group of companies and in major infrastructure and building engineering projects. In particular for development of internal BIM standards, BIM execution planning, 3D modelling, BIM coordination (collision detection), 4D and 5D modelling for cost estimates and controlling and PIM – Project information management.
"BIM Wash or BIM Washing is a term describing the inflated, and/or deceptive, claim of using or delivering Building Information Modeling services or products."

Wikipedia

CONFUSION or Unintentional BIMwash
INEXPERIENCE or Low-Level BIMwash
EXAGGERATION or Mid-Level BIMwash
ILLUSION or Severe BIMwash
Implementation of BIM to Karavanke Tunnel

Lower costs
- 33% reduction in the initial cost of construction and the whole life cost of built assets

Faster delivery
- 50% reduction in overall time, from inception to completion, for newbuild and refurbished assets

Lower emissions
- 50% reduction in greenhouse gas emissions in the built environment

Improvements in exports
- 50% reduction in the trade gap between total exports and total imports for construction products and materials
Implementation of BIM to Karavanke Tunnel

Venn diagram of purpose-built BIM models, Randy Deutch^9

3D → 4D/5D → 6D → ???
Implementation of BIM to Karavanke Tunnel

The New Networks

Distributed ledgers can be public or private and vary in their structure and size.

Public blockchains

Require computer processing power to confirm transactions ("mining")

Distributed Ledgers
Implementation of BIM to Karavanke Tunnel

Use of Technology

Automation of big data

Analysis

Real Benefits

Adds Value to our industry

 Raises Attractiveness of our industry.
Implementation of BIM to Karavanke Tunnel

Facts about **Karavanke tunnel**

- **8.000 m** long conventional tunnel
- > **1.000 m** overburden
- **Complex geology**

- 2 countries, 2 clients
- 5 coordinate systems
- Apart from the tunnel **many other structures** are part of in the design scoped
Implementation of BIM to Karavanke Tunnel

Why deploying BIM?

past Experiences

lots of Confidence

standard for the Future
Tunnel as fall over & twisted skyscraper?

Martin Lah courtesy
Implementation of BIM to Karavanke Tunnel

1. GEOLOGY AND GEOTECHNICS
 - Driven by mining exploration
 - Logging, managing and interpreting data

2. TEMPORARY WORKS
 - Driven by mine construction
 - Resource and time management

3. SPATIAL DATA ANALYTICS
 - Govern by stakeholders
 - Modified GIS approaches

4. PERMANENT STRUCTURES
 - Driven by maintenance
 - Modified surface construction BIM approaches

Stage

- Parametric
 - Basic design
 - Topography
 - Population
 - Alignment
 - Geology

- Segregated
 - Detailed design
Implementation of BIM to Karavanke Tunnel

Create parametric families

Assembly: distribute parametric families over profiles
Implementation of BIM to Karavanke Tunnel

Distribute niches and other interventions according to the requirements.
Implementation of BIM to Karavanke Tunnel

- Analysis of alignment
- Cost estimates
- Risk estimates
- Defining best excavation method
- Multicriterial analysis
- Analytical stability calculation

Parametric model
Local
Global
3D Geo model
Implementation of BIM to Karavanke Tunnel

- Analysis of alignment
- Cost estimates
- Risk estimates
- Defining best excavation method
- Multicriterial analysis
- Analytical stability calculation
Implementation of BIM to Karavanke Tunnel

- UTILITIES
- ROAD DESIGN
- INNERLINING - STRUCTURES
- EQUIPMENT
- REINFORCEMENT
- DDS-CAD
- AUTODESK AUTOCAD CIVIL 3D
- SOFiSTiK
- iC
Implementation of BIM to Karavanke Tunnel

Communication, Collaboration and Coordination
Implementation of BIM to Karavanke Tunnel

5D Modelling
Implementation of BIM to Karavanke Tunnel

Our plan

Reality
Implementation of BIM to Karavanke Tunnel

BIM ≠ BiM

C25/30 ≠ C25\30
Implementation of BIM to Karavanke Tunnel

- 4D
- 3D
- 5D
- 6D
- BEP
- BIM
- EIR
Implementation of BIM to Karavanke Tunnel

EIR: 6 Months of workshops

BEP: Workshops, trainings
Implementation of BIM to Karavanke Tunnel

- **PEOPLE**
- **PROCESSES**
- **TECHNOLOGY**

6 Months of workshops
Workshops, trainings
Implementation of BIM to Karavanke Tunnel

- EIR 6 Months of workshops
- BEP
- Workshops, trainings
- 3D BIM
Over 200 partial models
Implementation of BIM to Karavanke Tunnel

- EIR
 - 6 Months of workshops

- BEP
 - Workshops, trainings

- 3D BIM
 - QC No7 90%
 - QC No2 50%
 - QC No1 40%
Implementation of BIM to Karavanke Tunnel

EIR 6 Months of workshops

Workshops, trainings

BEP

3D BIM

QC No7 90%

QC No2 50%

QC No1 40%
Implementation of BIM to Karavanke Tunnel

EIR 6 Months of workshops

BEP Workshops, trainings

3D BIM

QC No1 40%
QC No2 50%
QC No7 90%

5D BIM

Stairway to another dimension

3D BIM 90%

6 Months of workshops
Implementation of BIM to Karavanke Tunnel

BEP 6 Months of workshops

Workshops, trainings

3D BIM

QC No7 90%
QC No2 50%
QC No1 40%

3D BIM

5D BIM

Stairway to another dimension

C25/30
C35/45

Tunnelling Class

Tunnelling Class

EIR
Implementation of BIM to Karavanke Tunnel

Solution – Standardization, Integration

BIM Requirements (EIR, BEP)

Standard database:
- Element (Classification)
- Properties (Standard names and values)
- Who?, What?, When? (IDM)
Thank you.